LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2018
MT 1100 - MATHEMATICS FOR PHYSICS

Date: 24-10-2018
Time: 01:00-04:00
\square

PART A

Answer All Questions.
($10 \times 2=20$)

1. Find the $n^{\text {th }}$ derivative of $e^{a x}$.
2. Prove that for the curve $\frac{1}{r}=A \theta+B$, the polar subtangent is constant.
3. Write down the expansions of e^{x} and e^{-x}.
4. Define symmetric matrix.
5. Find $L(\cos 3 t)$.
6. Find $L^{-1}\left(\frac{a}{s^{2}+a^{2}}\right)$.
7. Write down the expansion of $\cos n \theta$.
8. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. Define binomial distribution.
10. Find the arithmetic mean of the set $A=\{10,20,30,40,50\}$.

PART B

Answer Any Five Questions.
11. Find the angle of intersection of the curves $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
12. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$.
13. Find $L\left(t e^{-t} \sin t\right)$.
14. Express $\sin 7 \theta$ in terms of $\sin \theta$.
15. The average salary of male employees in a firm was Rs. 5,200 and that of females was mean salary of all the employees was Rs. 5,000 . Find the percentage of male and female employees.
16. Find the maxima and minima of the function $f(x)=2 x^{3}-3 x^{2}-36 x+10$.
17. Find $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$.
18. Write a short note on Poisson distribution.
19. (a) If $y=\sin ^{-1} x$ prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=0$ and $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
(b) Find the sum to infinity of the series $1+\frac{3}{4}+\frac{3 \cdot 5}{4 \cdot 8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\cdots$.
20. (a) Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$.
(b) Using Laplace transform, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t, y=\frac{d y}{d t}=0$ when $t=0$.
21. (a) Prove that $\sin ^{4} \theta \cos ^{2} \theta=\frac{1}{32}(\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2)$.
(b) If $\cos \theta=\frac{1681}{1682}$, prove that the angle θ is $1^{\circ} 58^{\prime}$ nearly.
22. (a) Calculate the mean and standard deviation for the following data.

Class Interval	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Frequency	3	61	132	153	140	51	2

(b) Find y_{n} where $y=\frac{3}{(x+1)(2 x-1)}$.
\qquad

